COMMON MULTIPLES OF PATH, STAR AND CYCLE WITH COMPLETE BIPARTITE GRAPHS

Reji T and Saritha Chandran C*
Government College, Chittur
Palakkad - 678104, Kerala, INDIA
E-mail : rejiaran@gmail.com
*Government Polytechnic College, Kodumbu, Palakkad - 678551, Kerala, INDIA
E-mail : sarithachandran.gvc@gmail.com

(Received: Apr. 10, 2021 Accepted: Apr. 06, 2022 Published: Apr. 30, 2022)

Abstract

A graph G is a common multiple of two graphs H_{1} and H_{2} if there exists a decomposition of G into edge-disjoint copies of H_{1} and also a decomposition of G into edge-disjoint copies of H_{2}. If G is a common multiple of H_{1} and H_{2}, and G has q edges, then we call G a $\left(q, H_{1}, H_{2}\right)$ graph. Our paper deals with the following question: Given two graphs H_{1} and H_{2}, for which values of q does there exist a $\left(q, H_{1}, H_{2}\right)$ graph? when H_{1} is either a path or a star or a cycle and H_{2} is a complete bipartite graph.

Keywords and Phrases: Graph Decomposition, Common Multiples of Graphs, Path, Star, Cycle, Complete Bipartite Graph.
2020 Mathematics Subject Classification: 05C38, 05C51, 05C70.

1. Introduction

All graphs considered here are finite and undirected unless otherwise noted. Let $|V(G)|$ and $e(G)$ denote, respectively, the order of a graph G and the size of G, that is, the number of edges in G.
K_{n} denotes the complete graph on n vertices, and $K_{m, n}$ denotes the complete bipartite graph with vertex partitions of cardinality m and n. A k-path, denoted

